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ABSTRACT

The second engineering model of the Multi-Mode Optical

Sensor (MMOS-B) was delivered in July 1973 by ITT/Gilfillan.

An evaluation test series was performed on the unit in order

to develop realistic specifications for a similar device

for use on the Orbiter vehicle. Tests included sensitivity,

target dynamic range, tracking angular rate, external mag-

netic field effects, and photocathode uniformity. Also,

several demonstrations of operation under automatic control

were prepared, using a desk calculator for numerical control

and subsequent reduction of data derived from the test.
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1.0 INTRODUCTION

This document describes a particular series of

evaluation tests which were done with the Phase B

Multi-Mode Optical Sensor (MMOS-B).

The first MMOS was procured under Contract NAS 9-11934

from ITT Aerospace/Optical Division, and delivery of the

engineering prototype model took place in March 1972.

This unit did not have full provision for rendezvous

tracking; however, its design characteristics permitted

a subsequent modification program to include the rendezvous

mode. The first model MMOS provided the following functional

modes of operation:

* Full-field acquisition of the brightest star

* Star tracking

* Offset mode

* Ultraviolet horizon profile radiometer mode.

In December 1971, the basic contract NAS 9-11934 was

extended to provide a Phase B portion of the MMOS program.

The contract extension required delivery of a new "B"

model MMOS in May 1973. This second model (MMOS-B) has

the same functional modes of the earlier unit and also

provides:

* Beacon-tracking mode

* Extended-target-tracking mode

* Hi-map mode

* Lo-map mode

* Landmark-tracking mode
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Development of the MMOS-B design was directed

toward exploring the feasibility of providing a general-

purpose optical sensor making full use of the flexibility

inherent in the image dissector tube. The finished design

demonstrated capabilities for applications such as ultra-

violet horizon sensing, landmark tracking, slow-scan

television, and modulated beacon discrimination and

extended-target tracking for rendezvous, in addition to

its basic function as a star tracker for alinement of the

inertial measurement unit. As the Orbiter vehicle opera-

tional requirements became better defined, interest in the

varied functions of the MMOS-B became limited to its appli-

cation as a star tracker and as a sunlit-target tracker for

rendezvous. Therefore, the test program was reduced to

cover principally the operating modes required for the

Orbiter application:

* Full-field acquisition of the brightest star

* Target star tracking

* Offset command mode

The other modes which the MMOS-B is capable of providing

will be tested in subsequent programs to determine their

usefulness in meeting any future Orbiter operational

requirements that may develop.
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2.0 SENSOR DESCRIPTION

The MMOS-B is an electro-optical instrument designed-

to alternately function as a star and object tracker that

acquires and tracks point or extended radiative and

reflective sources; as a scanning radiometer that measures

the earth horizon ultraviolet radiance profile; as a star

field or earth surface mapper; and as an earth landmark

tracker. It uses an S-20 photo surface image dissector

as a primary sensor and does not have mechanical devices

for spatial scanning purposes. However, it does employ

rotary solenoids and detent motors for protective sun

shutter and optical filter'operations.

2.1 Physical Parameters

The MMOS-B is entirely contained within a cylindrical

package approximately 15 inches long and 6 inches in

diameter. (See fig. 1.) All electrical connections are

made through a cable connector located on one end of the

instrument. The opposite end includes the optical lens and

sunshade. The cylinder has no protuberances and is not

constructed to be mounted in a specific position. The

primary restraint to consider in mounting the sensor is the

orientation of the tracker axes, which are defined by a

two-surface alinement prism on the front of the instrument.

2.2 Operational Parameters

The MMOS-B incorporates seven primary modes of

operation as follows:

* Full-field acquisition and tracking of the
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brightest star or beacon

* Acquisition and tracking of star or beacon

designated by external control

* Horizon profile radiometer mode

* Extended-target-tracking mode

* Lo-map mode

* Hi-map mode

* Landmark-tracking mode

The sensor connector socket has numerous input and

output points that may be used to externally control the

unit, monitor mode status, and obtain data outputs.

These points are listed below for reference and an aid to

understanding the MMOS operation as outlined in

subsequent paragraphs.

TABLE I. - MMOS OUTPUT AND INPUT LISTING

Output Description

X-position error ±5 Vdc, 1 V/deg, target relative to

boresight point, corrected for

linearity, filtered to 5-Hz bandwidth.

Data good only when sensor is tracking

a target.

Y-position error ±5 Vdc, 1 V/deg, target relative to

boresight point, corrected for

linearity, filtered to 5-Hz bandwidth.

Data good only when sensor is tracking

a target.
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Output Description

X-position angle ±5 Vdc, 1 V/deg angular target scan

position relative to boresight point.

Scan position continuously valid.

Y-position angle ±+5 Vdc, 1 V/deg angular target scan

position relative to boresight point.

Scan position continuously valid.

Also used as horizon radiometer scan

position.

Horizon intensity 0 to +5 Vdc, 5 Vdc level indicates

radiance of 1.505 x 10-2 W cm - 2

ster-1 micron-' bandwidth 200 A
O

centered at 3,850 A, 0 V. Zero dc

level indicates zero radiance.

Target magnitude 0 to +5 Vdc (magnitude scale/volt

determined during acceptance tests).

Target presence +5 Vdc ±0.5 V level indicates a

target is being tracked; 0 to 0.5 V

exists when no target is being tracked.

Beacon presence +5 Vdc ±0.5-V level indicates that

the tracked target is modulated at

4.725-kHz; 0-V to 0.5-V level exists

when the target is not modulated at

the specified frequency.

Sun shutter position Status of the sun shutter position. A

+5 Vdc level indicates shutter closed

with zero level for shutter open.

Video Analog signals proportional to

radiance level of target area being
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Output Description

scanned. High and low level outputs

are provided in separate channels.

Status Indicators TTL Logic

Logic "1" = 3.5 V ± 0.5 V indicates

operating mode.

Logic "O" = 0 V ± 0.5 V indicates

nonoperating mode.

1. Acquisition mode

2. Reacquisition mode

3. Tracking mode

4. Radiometer mode

5. Lo-Map mode

6. Hi-map mode

7. X-target mode

8. Landmark-tracking mode

9. Low-gain condition

10. Aperture position

11. 'Attenuator condition

12. UV filter

X-position offset ±5 Vdc, 1 V/deg offset reacquisition

scan field position relative to

tracker boresight.

Y-position offset ±5 Vdc; 1 V/deg offset reacquisition

scan field position relative to

tracker boresight.
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Output Description

Command modes Input of +5 Vdc 10 mA commands MMOS-B

to desired modes.

1. Lo-map

2. Hi-map

3. Offset

4. Radiometer

5. Extended target

6. Landmark target

COMNMAND RULES

1. The sensor is in the full automatic acquisition/track

mode when there is no command signal applied.

2. Only one command signal is honored by the sensor logic.

Switch to another mode will not take place until the

original command is removed.

3. In the offset mode, if no target is acquired at the

designated point, the command level must be removed

before another mode command or offset designation can

be made.

2.2.1 Full-field acquisition and tracking mode (star

and beacon targets). The sensor is normally operating in

this mode unless any of the other directive signals are

present on the external command circuits.

The automatic acquisition/track sequence operates as

-follows: After the tracker turns on, the system goes to
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the full-field acquisition state and begins a digital

search pattern for a target star. As the scan progresses

through the field, targets seen are observed in position

and brightness, and at the end of one full-field scan

sequence, the system directs the reacquisition field scan

center to the position of the brightest star seen and

verifies its presence. If the star is found, the sensor

automatically switches to a track scan mode. If no target

is found, the system switches back to the acquisition scan

mode and repeats the cycle. When the switch to track mode

is made and the target is found and tracked, a voltage

appears on the "target presence" output pin and analog

voltages denoting the X- and Y-field positions of the

target appear on the correct output connector pins. If

the target energy contains a 4.725-kHz modulation component,

then a voltage also appears on'the "beacon presence"

output point.

If the target is lost, the system switches to the

reacquisition mode ("mini-scan"), the target presence

signal disappears, and the voltages on the XY-position error

output terminals are not valid. The sensor searches the

field area where the target was last seen for about

15 milliseconds, and if the target is not relocated,-it

switches back to full-field acquisition and starts a new

search pattern. If the, target is found in the reacquisition

mode, the system switches to track, a target presence signal

returns, and valid position error voltages are again present.

2.2.2 Acquisition and tracking of a designated target

by external control mode. The sensor switches to this mode

upon external command and positions the center of the
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reacquisition field to a point in the field-of-view, which

is determined by the analog voltage levels applied,to the

offset terminals.

If a target is seen by the reacquisition scan, the

,sensor switches to the track mode, shows target presence,

and develops position voltage data. If no target is seen,

the unit will remain in the "mini-scan" until allowed to

return to automatic mode or until another series of offset

voltages are applied and the sensor .is again commanded

to search.

2.2.3 Horizon profile radiometer mode. In this mode

the sensor performs a function which is not related to the

previously described acquisition/track operations.

When externally commanded, the sensor switches into
a series of events which cause the instantaneous field of

the dissector/optical system to be scanned in a vertical

sweep through the total field-of-view without horizontal

displacement. At the same time, a rotary solenoid inserts
O

a 3,800 (±100 A) filter into the optical path. The

output circuitry provides a linear analog voltage which is
proportional to the amount of radiant energy striking the

particular photo cathode surface area defined by the

translated instantaneous field-of-view. The scan is

continuous at a 0.1-Hz rate until a mode change command is

received by the sensor.

The instantaneous field-of-view position of the vertical
scan is determined by monitoring the Y-position angle

voltage output.

2-8



2.2.4 Extended-target-tracking mode. This method of

operation is similar to the star track mode, except the

cruciform scan pattern is lengthened to cover approximately

60, peak-to-peak, in the field-of-view. No acquisition

actions are taken, and when the MMOS-B is commanded to this

mode, the enlarged track scan pattern is centered to the

extended source target image. Target presence is then

indicated and X- and Y-position error voltages are produced.

If the target is lost, the system returns to the automatic

mode.

2.2.5 Lo-map mode. In this mode the MMOS-B total

field-of-view is continuously scanned at 8 frames/second.

The same digital search-pattern used in the automatic

acquisition mode is used. X- and Y-position angle voltages

appear at their proper output points, and voltage pulses

proportional to target irradiance will be present at the

video output. Stars as dim as +2.0 magnitude can be detected

in this mode.

2.2.6 Hi-map mode. This mode is identical in opera-

tion and output characteristics to the lo-map mode.

However, the sensitivity level is substantially lower than

that of the lo-map mode. Scene brightnesses as high as

10,000 foot-lamberts (e.g., sunlit clouds) can be viewed

safely in this mode.

2.2.7 Landmark-tracking mode. The landmark-tracking

mode operates in a similar manner to the previously described

map modes. The scan pattern is limited to a square field

of 2.5', and the digital search pattern is repeated at a

30 frames/second rate. X- and Y-position angle voltages
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are present at the output, and video voltages proportional

to the target irradiance are also available. The upper left-
hand corner of the field position is determined by voltages
present on the offset input lines, and is updated to these
voltages once each frame.
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3.0 TEST INSTRUMENTATION AND FACILITIES

The MMOS-B evaluation program tests have been conducted
at JSC using the optical laboratory facilities in Building 16A.
To adequately perform the tests, several items of special-
purpose test equipment have been originally designed and
constructed while other test equipment items result from
modification of devices that have been used on previous JSC
programs. These are explained in more detail in the
following paragraphs.

3.1 Calculator Control Unit (CCU)

A star tracker for the Orbiter will be operated by the
onboard computer system for remote control, status monitoring,
and data reduction. To make the evaluation program as
realistic as possible to the intended future-use conditions,
a method of control of the MMOS-B has been designed using
the 9100B Hewlett-Packard desk calculator and associated
interface equipment. The necessary components to effect
the interface control operations are mounted in a portable
rack cabinet that is designated as the Calculator Control
Unit (CCU). Included in the cabinet are:

* Hewlett-Packard 2570A coupler/controller

* A control panel

* Power supplies for the MMOS-B input and logic control
circuits

* D/A converters (for offset mode)

* A/D converters (for XY-position error, horizon
radiance level, radiometer Y-axis position angle, and
star magnitude inputs).
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Complete control of the MMOS-B along with mode status,

data reduction/smoothing, and printed readout of data points

is possible with the CCU and calculator when properly con-

nected to the MMOS-B via the single cable normally required

to activate the instrument.

3.2 Manual Control Unit (MCU)

A secondary control unit that provides for manual

mode selection, mode status signals, and adequate test

points to permit initial setup, troubleshooting or inspec-

tion of signals being transferred from the MMOS-B to the CCU

during normal operating functions has also been provided.

Included in the MCU cabinet are:

* Tektronix model 604 display monitor

* Hewlett-Packard 3440A digital voltmeter

* Control and indicator panel

* Test point panel

* Simulator panel

* Power supplies

The MCU can be used alone or with the CCU if monitoring

or manual controls are needed for testing.

3.3 Two-Star Simulator

A Two-Star Simulator unit designed and fabricated by

the Farrand Optical Company under Contract NAS 9-6064,

June 8, 1966, was used to provide star targets for some tests.
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This device provides two stars with separately variable
magnitudes and is designed so that the collimated beams
representing the two stars can be superposed at a point
40 feet from the instrument.

The star magnitude range is from -1.5 to +3.0 Mv on
one star, and +3.0 to +5.0 Mv on the other. The angular
separation can be continuously adjusted from s'uperposition
to 20 separation. The target output approximates a G2
spectral class star.

3.4 H. R. Moore Two-Axis Mounting Table

The H. R. Moore two-axis mounting table used to position
the MMOS to a designated azimuth (X) and elevation (Y)
pointingangle for certain test configurations. The table
was calibrated to provide a precise pointing capability of
2 arc seconds and an interpolative capability of 1 arc second.

3.5 Ultraviolet Horizon Simulator

This device produces an acceptable simulation of the
earth's ultraviolet horizon profile as it would appear to
an Orbiter-mounted unit while operating at an altitude of
300 nautical miles. It is mounted on the reverse side of
the Moore two-axis table so that the MMOS-B looks directly
into the output collimated beam when rotated 1800 from the
front position.

The simulator is designed to produce proper radiance
values in the 3,800 (±100 A) window, accepts various types
of profile targets, and provides for radiance calibration.
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The optical collimator and target size have been selected

to provide a radiance volume that is compatible with the

MMOS-B field-of-view for a 300 nautical mile orbit simulation.

3.6 Beacon Simulator

The Beacon Simulator is used to test the MMOS-B response

to a modulated beacon source. The simulator energy source

is a xenon-arc lamp that can be modulated at 4.725 kHz up

to an 80-percent level. Range of the beacon to the MMOS-B

is simulated by using a specially constructed optical atten-

uator. With this device vacuum ranges from 1 to 1,000 miles

are simulated under laboratory conditions.

3.7 Star Field Simulator

The Star Field Simulator was designed and constructed
to provide a variety of targets for the MMOS-B accuracy tests.

The unit can provide full-field display star targets of

any number, magnitude, and angular displacement (within the

total field) desired for the test program. It can be used

to replace the Moore table and Two-Star Simulator combination

for field mapping, target acquisition, and discrimination

tests. The device is constructed to permit interchange-

ability of target plates as required.

When the simulator was used with the MMOS-B and properly

programmed, CCU complete field map data was completed in
a few minutes. Target plates depicting various extended

source targets were used to test the extended-target

tracking mode.
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3.8 Video Display.Device

The video display device is a Tektronix Model 604

Display Monitor, which has been supplied with a long

persistence P7 phosphor cathode-ray tube. During use,

X- and Y-position angle voltages are supplied to the

horizontal and vertical oscilloscope inputs, and the video

output voltage is connected to the oscilloscope Z-input.

The position of the star targets and their relative

brightnesses are visually displayed.

3.9 Rotary Table Device (ROTAB)

A rotary table unit located in the Inertial Systems

Laboratory was made available for the MMOS-B tests.

This device has a large rotary plate which can be turned

at a controlled rate. The position of the table is

indicated by a digital read-out system accurate to at

least 5 arc seconds. Rates of rotation from 0.010 per

second to over 0.50 per second are available. With the

MMOS-B mounted on the table so that the objective lens

nodal point is over the axis of rotation, a fixed star

target will simulate a constant angular rate movement

to the tracker.
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4.0 TEST OBJECTIVES, PROCEDURES, AND RESULTS

In order to meet the goals of the MMOS-B evaluation

test program as outlined in section 1.0, the following

tests were completed:

* Operational Test (4.1)

* Target Sensitivity (4.2)

* Target Brightness Range (4.3)

* Tracking Rate (4.4)

* Magnetic Field Susceptibility (4.5)

* False Target Recognition and

Rejection Test (4.6)

* Photocathode Uniformity (4.7)

* Automatic Field Map (4.8)

4.1 Operational Test

4.1.1 Objective. To determine the operability of

all-MMOS-B functions, including mode switching, output

levels, and mode status signals.

4.1.2 Description. The MMOS-B will be mounted on

the Moore two-axis table and connected to the CCU. Targets

will be generated by the star and horizon simulators;

then the CCU will be cycled to produce each mode function.

Status will be monitored and position data (where applicable)

will be verified for correct values.

4.1.3 Results. Although no specific evaluation data

results from this test, it is useful in providing a

4-1



knowledge that the MMOS-B is, or is not, operating in a

normal manner.

4.1.4 Discussion.. It was originally intended that

this test would only be used to test the operability of the

MMOS-B during the evaluation program. As the tests

progressed certain unusual conditions and suspicions of

improper operation of the MMOS-B occurred, and these

baseline operational tests helped to determine the

conditions encountered and aided in their solutions. As
a result of this test technique, it became obvious that

a standard test series and use of a test set or fixtures

was required to verify the operation of the flight models.

4.2 Target Sensitivity

4.2.1 Objective. To observe the ability of the
MMOS-B to acquire and track star targets of low intensity

and to finally ascertain the threshold sensitivity to be
expected during operational sequencing.

4.2.2 Procedure. The MMOS-B was placed on the Moore

table with the Star Field Simulator used as the target

source. Prior to placing the MMOS-B into position, the
simulator calibration was verified with the Pritchard

Photometer, and was then set to a +3 Mv target brightness

level. After placing the MMOS-B into position, the star
was acquired and tracked by controlling the MMOS-B with

the Manual Control Unit (MCU). The target magnitude

voltage was read and recorded from the MCU panel digital

voltmeter. The test was done by sequencing the MMOS-B to
allow it to acquire the target star while in the automatic
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mode. After tracking had begun, the target magnitude was

noted and recorded. This event chain was then repeated

for other star target brightness values as needed. The

threshold level was determined by lowering the target

brightness until the MMOS-B would not acquire. A secondary

effect test was conducted to determine the loss of signal
(LOS) point of the MMOS-B while it was in a tracking mode
on a previously acquired target. The target brightness

was lowered until the MMOS-B,dropped out of track and went

to the automatic mode.

4.2.3 Results. The following significant data was
taken to illustrate the test objective:

Target Magnitude Target Irradiance Target Brightness
(Volts) (S20 watts cm-2 ) (Visual Magnitude)

0.81 1 2.89 x 10- 1 4  +3.00

*0.41 1.72 x 10 - 4  +3.79

**0..29 1.22 x 10-14 +4.06

*MMOS-B failure to acquire level

**Loss of signal level

Offset and automatic acquisition have the same threshold.

4.2.4 Discussion. The MMOS-B was designed to acquire
and track star targets of +3.0 magnitude or brighter. The
test demonstrates this capability, because at the level
of +3.0 magnitude, the unit acquired and tracked the target
100 percent of the times tried. At the level of +3.79

magnitude, no acquisitions were made. In between these
brightnesses, acquisition was spotty and it probably is

possible to establish a useable track/no track ratio curve
slope between the points.
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It was also determined that the automatic acquisition

and offset modes have equal thresholds. This is the effect

which was anticipated for the tracker where no perceptible

background radiation exists. Introduction of a background

level will produce different threshold level values,

depending upon the amount of background present. Loss of

track at a target level below acquisition thresholds is an

expected result of this type of unitdue to the signal

processing and logic techniques used in the MMOS-B

basic design.

4.3 Target Brightness Range

4.3.1 Objective. To determine the ability of the

MMOS-B to acquire and track star targets of different

intensities, and to ascertain the target brightness range

through which it will operate and supply accurate and

dependable position data.

4.3.2 Procedure. The MMOS-B was placed on the Moore

table with the Star Field Simulator used as the target

source. The MMOS-B position was adjusted so thatthe center

field star target was located on its electrical axis,
(X,Y equal to 0,0). The target intensity was then cycled

from +3 Mv to brighter values with target magnitude

and X,Y position data taken and recorded.

4.3.3 Results. Position values recorded are a result

of computing the average values of ten samples of error

voltages taken at the X,Y position of 0,0 and of applying a

one volt per degree scale factor to the results. Target

brightness was varied from +3 M to -3 Mv and the following

data was taken.
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Target Magnitude Visual Y Pos X Pos Y Pos
(Volts) Magnitude X Pos (MV) (se) (sc)

.81 3.0 2 3 7 11

1.18 2.5 1 2 4 7

1.66 2.0 2 2 7 7

2.21 1.5 3 2 '11 7

2.78 1.0 1 3 4 11

3.35 0.5 2 2 7 7

3.80 0 0 3 0 11

4.25 -0.5 2 2 7 7

4.49 -1.0 3 4 11 14

4.64 -1.5 3 2 11 7

4.75 -2.0 2 4 7 14

4.76 -2.5 3 4 11 14

*1.23 -3.0 12 16 43 58

*Atthnuation automatically activated between -2.5
and -3.0 magnitudes.

4.3.4 Discussion. It can be seen from the test data

that the MMOS-B has excellent positional data stability from

the dim +3.0 Mv to the point where the attenuation mechanism

activates. A subsequent test performed after the data

was taken indicated that the attenuator moved into position
at -2.8 Mv. At this time the shift in X and Y position

indicated was caused by the attenuator aperture positioning

in the optical system. Repeated cyclings indicated that

the shift (approximately one arc minute), was constant and

repeatable. From this test, it can be concluded that the

method of attenuation used can cause positional data shifts,
and therefore, further analysis of the process, optical or

mechanical, needs to be considered in'the design of

subsequent star trackers.
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4.4 Tracking Rate

4.4..1 Objective. To determine the error lag produced

by the MMOS-B when tracking a target moving at constant

velocities through the field of view.

4.4.2 Procedure. The MMOS-B was positioned on the

ROTAB with the Star Field Simulator used to provide a

stable single star target. (See fig. 2.) The alinement and

mounting method for the MMOS-B was done in a manner which

insured that, as the table turned, the target moved only in

the X axis with a constant -0.50 Y-axis displacement during

the total X field of view traverse from -50 through 00,

then to +50. Data was taken and recorded by means of the

Calculator Control Unit (CCU), consisting of a reading of

table position and X-axis error output voltage, which

correlated to the star target position in the field of

view. Table rotation rates were varied with data runs

made at 0.1, 0.2, 0.3 and 0.5 degrees/second. In order to

establish a scale factor measurement at various field

positions, the table was slowed to 0.01 degrees/second

and table position/X error output voltages were recorded.

The data rate, which was dependent upon the HP9100B

Calculator System, was approximately two points per

second.

4.4.3 Results. From the data taken, the tracking lag

was computed for each rate. The scale factor data came

from the low rate (0.01 degrees/sec) calibration. Scale

factor points were selected to be the values nearest the

ROTAB position tabulations for the various rates. The

lag errors at the selected rates are shown in table II

and figure 3.
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TABLE II. - POINT-TO-POINT SCALE FACTOR

Lag (arc seconds)

0.1 degrees/sec 0.2 degrees/sec 0.3 degrees/sec 0.5 degrees/sec

46.30 63.91 106.74 184.60

53.40 74.60 99.40 184.78
39.14 56.70 117.42 170.02

35.45 74.50 99.36 178.40
31.87 63.55 139.27

39.19 63.69

31.90

28.17

39.05

35.43
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SLOPE - 358 ARC SEC/DEGREE/SEC

0.1 0.2 0.3 0.4 0.5

DEGREES/SEC

Figure 3. - Point-to-point scale factor.
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4.4.4 Discussion. The MMOS-B performed in a

predictable manner as regards the tracking lag values

obtained. At 0.2 degrees/sec, the lag closely approaches

the maximum acceptable pointing errorof one arc minute

and has a linear reaction to target velocity throughout

the range tested. Although the higher rates increased

the lag error, the tracker demonstrated the tenacity

required to hold a target at the maximum rate tested.

4.5 Magnetic Field Susceptibility

4.5.1 Objective. To determine the susceptibility of

the MMOS-B to an external magnetic field, and to ascertain

if there are any observable deleterious operational effects

to be noted during the presence of the field.

4.5.2 Procedure. The MMOS-B was placed on a wooden

platform in the center of the laboratory room so that any

metallic objects were not closer than five feet. The

unit was activated and the Star Simulator was used to

provide a star target from a point in front of the MMOS-B.

The magnetic field was supplied by passing a dc current

through a single no. 12 conductor, which could be positioned

parallel or perpendicular to the MMOS-B cylinder at any

external distance up to touching the external shell.

Measurement of the field generated was made with a Bell

Model 120 Gaussmeter.

The star tracker was set to a +3 M level, and was

then acquired and tracked by the MMOS-B while X and Y

position data were recorded. The external conductor was

placed parallel, perpendicular, and.at various distances
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and locations in relation to the MMOS-B outside shell.

As the conductor was moved to new positions, the X and Y

position voltages were observed for change.

4.5.3 Results. With the equipment available, it

was possible to pass a current of 25 amperes through the

conductor and by use of the Gaussmeter, a magnetic field

of 5.2 to 5.5 gauss was measured at a point 1 cm from the

wire. At this level, no perceptible change was noted in

the X and Y output voltages for all positions of the

conductor.

4.5.4 Discussion. From the results obtained in this

particular test, it is obvious that the MMOS-B has adequate

magnetic shielding to protect it from the induced field,

which is somewhat greater than that of the earth. It

should be noted that measurement of the flux density at

the shell does not evaluate the total effect of an

external field to the internal dissector/deflection

assembly. It only shows that the magnetic shielding

peculiar to the MMOS-B construction is adequate to cause

the effect to be negligible for the conditions of this

test. Subsequent tests using higher intensity fields

are needed to properly evaluate the problem. A star

tracker design should be made which would ensure that no

significant effect on its accuracy would be present from

any magnetic field environments experienced when it is

used in the Orbiter under operational situations.
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4.6 False Target Recognition And Rejection Test

4.6.1 Objective. To develop and test a system for

calculator control of the MMOS-B in order to provide a

false target recognition and rejection technique.

4.6.2 Procedure. The MMOS-B was mounted on the Moore

table and adjusted to observe the Farrand Two-Star Simulator

for a fixed target. The star target intensity was adjusted

to approximately +2 Mv brightness during the test. Another

star target was supplied by using a pinhole and light

source which was mounted on an arm secured to the shaft of

a low speed electric motor. This source was adjusted to

provide a brighter (approximately 0 My) target brightness.

The motor speed and target position on the arm was set to

provide a target movement of about 0.250 per second through

the MMOS field with a circular movement diameter of near 3.5'

in the field. The unit was positioned to insure that the

fixed star target lay on the circumference of the rotating

pattern, so that once during each revolution the targets

were superposed.

A calculator program was generated which would control

the MMOS-B and periodically monitor the X and Y position

outputs while in the track mode. Subprogramming analyzed

the X and Y positions for any detectable changes in the

target position greater than error variations normally

encountered by system noise during static track. If a

change which exceeded the normal value was seen, the

MMOS-B track was broken and the calculator established

an offset mode to reestablish track on the original target

position. This program continued without operator
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attention until stopped or a new set of track/position
parameters were established.

4.6.3 Results. The test was started and the fixed
star was acquired and tracked by the MMOS-B. The rotating
target was started, and it was observed that as super-
position occurred, the MMOS-B changed targets and began
to follow the brighter moving star. The calculator
program was then started, and it was observed that shortly
after the brighter movable star was acquired, the MMOS-B
shifted to offset mode and reacquired the fixed target.
The pattern repeated with the same sequence of events
after each subsequent superposition.

4.6.4 Discussion. The test successfully demons'trates
a way to provide discrimination between two targets and
to finally select the desired target as determined by the
parameters selected. It is an example of one condition that
may be encountered on a space vehicle, if small sunlit
particles of space debris or water crystals appear in a
Star Tracker field of view and disturb the track operation.
This method also illustrates the value of the offset mode
in keeping the tracker under control and designating
its target.

4.7 Photocathode Uniformity

4.7.1 Objective. To determine the sensitivity
uniformity of the MMOS-B image dissector sensor photocathode
at selected points through the operational field of view.
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4.7.2 'Procedure. The MMOS-B was placed on the Moore

table with the Star Field Simulator used as the target

source. The MMOS-B position was adjusted so that the

center field star target was located on its electrical

axis, (X,Y equal to 0,0). The target intensity was set

to a +2 Mv level for the test duration. The Moore table

was then adjusted to all the desired star position values

within the field of view and target magnitude values were

recorded.

4.7.3 Results. The values of target magnitude

obtained at the field points located at one degree

intervals are tabulated in table III.

4.7.4 Discussion. From the-target magnitude values

obtained, it can readily be seen that the image dissector

photocathode is not uniform. This condition will be true

of any tube used in Shuttle star trackers, and therefore,

must be considered in preparing operational specifications.

The data on this tube shows a low sensitivity point in

the upper +X corner of the field and a higher sensitivity

buildup down the field diagonal to the lower -X position.

A difference of 1.3 star magnitudes exists between the

high and low points. This value represents a variance of
33 percent in photocathode sensitivity. Referring to

the results of section 4.2, Target Sensitivity Tests, it

can be predicted that an acquired target at XY coordinates

of -50, -50 which measured to be +3 Mv would probably not

be acquireable at the XY point of 50, 50, due to the loss

in photocathode sensitivity which would give the target an

apparent +4.3 Mv value. The results of the test in

section 4.2 show the threshold to be 0.79 magnitude below
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TABLE III. - PHOTOCATHODE UNIFORMITY (My)

5 2.1 2.1 2.2 2.3 2.3 2.4 2.4 2.4 2.7 2.7 2.8

4 1.9 2.1 2.1 2.2 2.2 2.3 2.4 2.4 2.6 2.7. 2.8

3 1.8 1.9 2.0 2.1 2.2 2.4 2.4 2.5 2.6 2.7 2.8

2 1.8 1.8 1.9 2.0 2.1 2.2 2.3 2.5 2.6 2.6 2.8

1 1.7 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.6 2.7

Yo 0 1.7 1.7 1.8 1.8 1.9 2.0 2.1 2.2 2.4 2.6 2.7

1 1.6 1.7 1.7 1.8 1.9 1.9 2.0 2.2 2.4 2.5 2.7

2 1.6 1.7 1.8 1.8 1.9 2.0 2.0 2.2 2.3 2.5 2.6

3 1.5 1.6 1.7 1.8 1.9 2.0 2.0 2.2 2.3 2.5 2.6

4 1.5 1.7 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.5 2.6

5 1.6 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.2 2.5 2.5

5 4 3 2 1 0 1 2 3 4 5

Xo
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specification level of +3 magnitude. This difference

represents a value of 21 percent photocathode sensitivity

variance, which would be the maximum allowable to insure

acquisition of a +3 Mv star in all portions of the field

of view.

Experience with other image dissector sensors and

discussions with tube manufacturers indicate that any other

tube will probably have different sensitivity distributions.

It is even possible to have a center dropoff with high

response in the corners. What is important in specifying

tube selection is to insure that the high and low sensitivity

areas are as nearly uniform as possible regardless of area

distribution. By tube selection processes, it will be

possible to maintain an adequate variance of 15 to 20

percent. Lower values of variance may be achieved by

checking a larger number of samples, but the cost/time

factors of tube supply will escalate as the specification

value is lowered.

4.8 Automatic Field Map

4.8.1 Objective. To develop and test a system for

calculator control of the MMOS-B to provide an automatic

field map recording system which includes field positioning,

data taking, position calculation, and plotting on recording

of the finished product.

4.8.2 Procedure. The MMOS-B was placed on the Moore

table with the Star Simulator placed in front of the

table to supply the one degree separation field map targets.

The HP Coupler/Calculator (CCU) was connected to the MMOS-B
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and both Digital Printer and Calculator Plotter were

readied to accept data and plot a completed map. The

system was programmed to provide the following sequence of

events:

1. Places cbrrect position (X-Y) voltages on the

offset input and commands the MMOS-B to offset

mode.

2. Searches for and receives the target presence

signal.

3. Selects data from X and Y error channel.

4. Performs averaging of positional data, and computes

angle position by multiplication by the respective

scale factor.

5. Plots the computed point position in respect to

the absolute anticipated position.

6. Breaks MMOS-B track and repeats the process for the

next point.

4.8.3 Results. The system was set up and performed

satisfactorily. The ability to produce field maps with any

pattern of star targets within the capability of the Star

Simulator was demonstrated.

4.8.4 Discussion. The results of this test demonstrate

the ability of the MMOS-B to be controlled and to supply

usable data to a programmed calculator system. The substi-

tution of a small computer to perform the same operations

with even more operational programs, data storage, and

problem calculations is an obvious conclusion to be made

from the demonstration. The automatic operations and
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correct reception to properly initiated external commands

demonstrated by the MMOS-B can be included in a modified

form in the Orbiter Star Tracker as desired, providing

that Star Tracker/Computer interface logic rules are

established in the overall system concept.

The offset mode control feature found in the MMOS-B

was highly instrumental in the success of these tests.

Although there are other methods of causing star target

selection in the laboratory which would.not require an

offset mode, such a choice of target selection will not be

available while the Orbiter is in flight and using real

star targets. Therefore, the presence of an offset mode of

operation appears mandatory to its successful employment.

A completed field map is useful for evaluation of

performance, detection of problem or fault areas, and in

developing improvements in design criteria. They can contain

any number of target points with field of view locations

which are limited by target simulator capabilities or by

some acquisition limitations inherent to the Star Tracker.

A sample field map is shown in figure 4. This parti-

cular type has 36 targets equally spaced at the 10, 30, 50

points in the ten-degree field. Target number 37 is the

field center and is used as the origin of the coordinate

system. In order to boldly see the error values and the lo-

cation of the actual plotted point (designated by the tri-

angle), the area (black encircled square) immediately around

the true position (single point designation) is scaled to ±+ one

arc minute. A line drawn from the true point to the actual

point will illustrate the error in polar rotation, thereby
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showing at a glance the direction and magnitude of the

error. The data supplied in the table shows the individual

X and Y displacements in the arc seconds.

Another type of field map is shown by figure 5 and
table IV. A group of 121 points are represented by targets
spaced at each one-degree point in the entire ten-degree
field. The error is shown by the vector method and the
associated chart gives the errors in arc seconds for each
point. This type of map is good for quick observation of an
error shift or possible rotation about a point, and can be
used to effectively determine if the field error pattern is
changing when environmental temperature changes of mechanical
stimuli are being applied. In this representation, the
area around the point represents an expanded error scale as
was done in the first type.

In order to make the field map effective for testing and
evaluation, the data, which is eventually used to present
the graphic map, must be taken quickly so that changes from
external processes or environment will be minimal over the
field. The automatic method described can fulfill the
requirements needed for speed of measurement in. order to
provide reliable graphic field maps that can be used for
test records, performance checking, and engineering develop-
ment. It is an innovative achievement to take advantage of
the automatic multi-mode capabilities of the MMOS-B that
provide the basis for a Test Set concept to be used for
subsequent Orbiter Star Tracker field operational checks
and reverification of accuracy after flight or ground
maintenance.
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5.0 CONCLUSIONS

The results and data obtained from this evaluation

test series produced a number of significant conclusions

which were ultimately used in preparation of specifications

leading to the procurement ofrthe Orbiter Star Tracker.

5.1 Specific Conclusions

5.1.1 Operational test (par 4.1). The test operation

successfully showed the capability of the MMOS-B to permit

the checking of its modes of operation. Sequencing of

modes with operational status signals received from the

unit demonstrated the automatic features of the device,

as well as its ability to be controlled from an external

calculator system. Test experience provided a significant

background of information for preparation of specifications

for the Orbiter Star Tracker. In particular, the large

number of discrete lines associated with the command and

status signals offered a good argument for the serial-

digital interface selection for the flight model.

5.1.2 Target sensitivity (par 4.2). The MMOS-B was

capable of acquiring and tracking a star target of +3 visual

magnitude during the test. Since the ultimate sensitivity

of the tracker is determined largely by the lens aperture,
it was very important to confirm the sensitivity. With this

established by the test data, the size, shape, and volume

of the flight tracker with its lightshade could be specified

with confidence. In fact, the envelope specified was also

used as a basis for-structural design of the Orbiter Star

Tracker compartment.
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5.1.3 Target brightness range (par 4.3). The ability
of the MMOS-B to acquire track star targets of varying

brightnesses from +3 to -3.0 visual magnitude was proved by
this test. However, in the test data it was shown that
a target position shift appeared when the optical attenuator,
located between the lens and photocathode, was actuated.
Therefore, the test results indicate that in subsequent

designs the method of providing dynamic range adjustments

by this means should be improved or changed to prevent
excessive target position errors. The Orbiter Star Tracker
specifications reflect the concern for this problem by
requiring accurate performance throughout the operational
dynamic range.

5.1.4 Tracking rate (par 4.4). During the test
program.a method was developed to measure the angular rate
lag error with adequate precision. Consequently, the d-ata
was available to substantiate the requirement to include
this item in the Orbiter Star Tracker specification. The
MMOS-B has a dynamic tracking lag which permits target
position bias errors to be as large as one arc minute at
angular rates of 0.2 degree per second. The unit also
displayed a.capability of maintaining track at higher
rates up to 0.5 degree per second although target pointing
errors exceeded one arc minute.

5.1.5 Magnetic field susceptibility (par 4.5). Image
dissector tube trackers are particularly sensitive to
magnetic fields unless adequate magnetic shielding is
provided in the design. The MMOS-B had been designed to
operate in the earth's magnetic field. The results of this
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test indicated that the shielding design is adequate to

permit operation in the earth's magnetic field with a

superimposed magnetic field produced by the passage of a

large current through a nearby electrical conductor.

Observed operation was without deleterious effect up to

the current values achieved. Again, the test offers a

base point for establishment of the external magnetic

field interference specification of the Orbiter Star

Tracker.

5.1.6 False target recognition and rejection test

(par 4.6). False target acquisition received a great

deal of attention during the preparation of the Orbiter

Star Tracker specification because of operational problems

with the Apollo Telescope Mount Tracker on Skylab. While

there is no safeguard against such problems in the Orbiter

Star Tracker design, the test 'showed that it was possible

to provide an onboard software technique for identifying

spurious targets and rejecting them in favor of the desired

star target. Such spurious targets may be present around

the operational 'Orbiter from sunlit paint particles or ice

crystals and could cause the Star Tracker to produce

erratic data. This test presents one possible way to

avoid the problem by utilizing and controlling the

versatile modes to be present in the developed Star Tracker.

5.1.7 Photocathode uniformity (par 4.7). The uniformity

of image dissector photocathodes is extremely important to

the adequate performance of any using Star Tracker. Data

from the test indicated that the tube in the MMOS-B was non-

uniform and..ould not be acceptable in a flight model unit.
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Procurement specifications for tubes to be used in the

Orbiter Star Tracker should require uniformity patterns

of the sensor photocathode which would insure that the

surface sensitivity is adequate for the acquisition and

tracking of a +3 visual magnitude star target anywhere in

the field. In the case of the MMOS-B this could not be

due to a 1.2 visual magnitude spread from the least to most

sensitive portions. Acceptance tests of the completed unit

should be made with photocathode uniformity data available

for reference so that tests can be made for minimum

operational capabilities at the least sensitive point in

the field.

5.1.8 Automatic field map (par 4.8). The automatic

field map system used with the MMOS-B was only possible

because of the features in the device permitting mode

selection from external commands and the supplying of

reverse status data to the controlling element. Field map

plotting without this method is a' laborious and tedious

operation requiring extreme caution in adjustment and data

collection. The entire operation for a 121-point map (one-

degree intervals) can take two operators from 30 to 45

minutes. Since the thermal drift and field skew which occurs

during warm-up and subsequent temperature changes has a

time duration of one-half to two hours, the manual method

cannot be used without serious compromises on its coverage.

The automatic method reduces the time to about 2 to 3 minutes

for the complete data taking process using the desk calculator

method. Therefore, meaningful test data can be taken while

the unit is undergoing temperature and other environmental

changes, making it possible to analyze the time-dependence

of these important error sources.
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